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Abstract. 'Ex scalar equation equivalent to the 'classical Boussinesq'. or Broer-Kaup system, 
is shown to factorire into a differential operator acting on Burgers equation. The linearizability 
of this latter equation provides a very simple explanation for the recently found property of 
fusion and fission of a class of solitons for this system. 

1. Introduction 

The Broer-Kaup (BK) system [I-31, also called the classical Boussinesq system, consists of 
two coupled partial differential equations (PDE) in the variables ( U ,  V )  [ I ]  

Or ( U ,  V - U2/4 = W) [4] 

U, + (W + ;U'). = 0 
w, + fi2uxx. + iUWX + U, w = 0 

(note that, in equations (la),(lb) and (2a).(2b), fi  only appears by its square). It admits 
the two reductions V = 4$Vx to a Burgemequation for U .  Under the natural parametric 
representation of the first equation 

the BK system is equivalent to the scalar equation [2] 

( 5 )  
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1 E E H ( U ~ U X X X  - 2 ~ : ) ~  + Zbo(U,U,, t ~u,u,,) - 3b& = 0. 
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This equation is invariant by parity (U. x,  t )  + (-U. -x. - t )  and. in order to avoid writing 
&a, we denote by a either of the two square roots of a*.  , 

This system possesses a Lax pair [Z, 6,7] and admits N-soliton solutions [3] with a 
coupling factor given in equation (4.16) of [SI. But it  also admits another class of solutions 
of a very particular type: they are expressed analytically as degenerate N-soliton solutions 
whose coupling factor is zero [9,10]; these solutions have the remarkable property that they 
allow fusion and fission to take place [9, IO]. 

The arguments given up to now for the behaviour of these degenerate solutions are 
based on the existence of bilinear [IO] or even trilinear [9,1 I ]  forms for the BK equation. 
Despite the correct observation [IO] that ‘the soliton-fusion solution of BK represents the 
confiuence of shock waves in the Burgers equation [IZ]’. only quite heavy explanations 
have been given for this phenomenon. One is that ‘the BK system is a reduction of the 
two-component KP hierarchy’ [lo, 131, another one is that this is just a ‘(reflection of)  the 
particular structure of the trilinear form’ [9]. 

In this paper, we give a straightforward explanation, which involves no high-level 
techniques. We show that this phenomenon is an immediate consequence of the factorization 
of the scalar equation (5) into some operator acting on a linearizable equation, namely the 
Burgers equation. 

2. The Burgers subequation 

Sachs [14] pointed out the existence of a reduction of the BK system U, Burgers equation 
noticeable on the bilinear representation [SI of the BK system. In the appendix, we show that 
the Painlev6 analysis of (5) provides another reason for the appearance of Burgers equation: 
the ‘singular manifold equation’ of (5) is identical to that of Burgers equation (see equation 
(AlOc)). 

On the scalar form (5) of the BK system, one notices immediately the factorization 

E = f ( - 3 b d  -.a: + 2 ~ , a ,  + 2 ~ , )  F 

F 3bou, -arc, - ux.  2 

This factorization breaks the invariance of equation (5) by parity on (U, x ,  #), or by parity 
on a ,  which i s  the same. 

The linearizability of the Burgers equation into the heat equation [15] 

U = Log p 3 b o ~  - arp,, = 0 (7) 

now has the following simple consequences. 
Taking for (p the linear superposition 

one generates by equation (7) N-soliton solutions for both Burgers and BK with a zero 
coupling factor, i.e. of the degenerate type which exhibits fusion and fission. 
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3. The two sets Of solutions to BK 

The solutions to BK are thus split into two disjoint subsets: 
(i) those which are also solutions of the Burgers subequation; 
(ii) those which are not. 

The natural language to characterize these two subsets is that of the singularity structure 
of BK (see the appendix). Indeed, the first subset has one family of movable singularities 
(i.e. described by one r function), while the second one has two families (i.e. described by 
two t functions). 

This explains why, with two r functions [8,10] one finds the N-soliton solution to BK, 
while with one 5 function 19. I I ]  one can only find the degenerate solution with a zero 
coupling factor. Since the trilinear formalism for the BK system introduces only one r 
function, it cannot find the correct N-soliton solution. 

Let us illustrate this very important point on the one-soliton solution. 
The travelling-wave reduction U = s”-“(Z(e) - zl)de - (p/3bo)t, where c and p are 

c0nstant.s and ZI is a convenient constant translation, yields the equation 

aZZR = Z4 - 2(2: - p)Zz + K1.Z + K2 for zl = qboc (9 )  

where KI. K2 are two constants of integration. Its general solution Z is single valued. 
When the four zeros of the right-hand side polynomial are distinct, this is a Jacobi elliptic 
function; for one double and two simple zeros, the solution is the onesoliton solution 121 
of the BK system 

(10) a2ZR = (2 - ZO)’ [ ( Z  + ZO)* + 2(z; - z: + p) ]  (c. ZO,  p) arbitrary 

3z; - z: 4- z=zo- (2; - 32: + 3/L)(3Zi - 2: -4- p )  # 0 (1 1) 
zo f Jm cosh kt 

and this solution is not a solution of the Burgers equation. For two double zeros, this is a 
kink solution which is also a solution of the Burgers equation 

z 2  K , = O  K 2 = Z :  (12) 
zo 
a 

Z = -zotanh-C 

and corresponds to N = 1 in (8). 

subequation 

p = z, - zo 

When its RHS has two double zeros, the Jacobi equation (9) admits the Riccati 

aZ’ = (Z - ZO)(Z + 20) .  I (13) 

The Jacobi equation has two families of movable singularities, and the Riccati equation 
only one. 

The fundamental difference between the true one-soliton (1 1) and the degenerate solution 
(12) is that the latter is the logarithmic derivative of the entire function (8) with N = 1, while 
the former is the difference of two logarithmic derivatives of entire functions [16]. Their 
stmcture of movable singularities is therefore quite different: a simple pole for (13); two 
simple poles with opposite residues for (9). There is exactly the same difference between 
the singularities of ux depending on whether U satisfies Burgers or BK. 
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4. Conclusion 

The essential feature of the Broer-Kaup system is to have two families of movable 
singularities. not just one like Burgers. Since, as shown in this paper, the BK system 
contains the Burgers equation as a subequation, the solutions found to BK depend crucially 
on the assumption made to find them. The trilinear formalism (assumption of one family) 
will only find solutions which are also solutions of Burgers, i.e. those which exhibit fusion 
and fission. The bilinear formalism with two t functions, or any other assumption with two 
t functions [16-20], will find the physically interesting solutions, that is, the ones which 
are not also solutions of Burgers. 

For the same reason, in order lo obtain the Lax pair of BK from Painlevb analysis, one 
must go beyond [ 18,191 the ShlE method, which makes use of only one family. This will 
be done in a forthcoming paper. 
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Appendix. Modified Boussinesq systems 

The PDE 

1 2  E E ?(U uXzI - 2u;)x + 2 b o ~ r ~ x z  - biu,u,, - 4bzu,u,, + 2b3uXz + b4uxr + bsu,, = 0 

( A I )  

with (a, bi) constants, is invariant by parity on ( U ,  x ,  t )  (the parameter a represents this 
invariance). It includes, as particular cases [SI, the BK equation (5). the modified Boussinesq 
equation (me) 18,211 and the modified Korteweg-de Vries (MKdV) equation. Its Painlev6 
analysis [14,221 is just a transposition of that of the M B ~  equation [23,24].  Let us use the 
invariant formulation [251 of this analysis, and take as expansion variable a function x (and 
the x-primitive Log @ of x - I )  whose gradients are 

xx = 1 + ; s x 2  (A2) 

(Log @L = x - I  (Log$), = -cx-l+ fC. (A31 
s, + c,,, + 2CJ + cs, = 0. (A4) 

XL = -c + c,x - f ( C S  + C,,)X2 

The singularity degrees of U and E are 0 and 4 

U - UOI Log @ E N 2(~01  - u - ~ u & ) x - ~  (A51 

and the two families U = aLog@ + uo+ ulx + ... have the same indices (-1,0,3,4), 
Each family generates the necessary conditions for the absence of movable logarithms 

1 
Q 3 =  - - ( b : + 4 b 5 - 4 b ~ ) ( C , + C C X ) = O  4a (A@ 
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(bi - 2b0)(3bi + 260) 3blbi bz t 7 f bzb5 
Q4=[ 4 

where uo is the arbitrary function introduced at index 0. The other family generates the 
conditions obtained by changing the sign of a in the above expressions. All these conditions 
are independent of S, and their resolution for arbitrary (C, uo) provides the only three 
solutions: 

i.e. respectively the MKdV, MBq and BK PDEs after some linear transformation on U. Since 
all three have a Lax pair, the necessary conditions are also sufficient. 

Let us also determine the ‘singular manifold equation’ (SME) [26], i.e. the condition on 
(S, C) which is necessary for the existence of an expansion uT = a Log + + uo restricted 
to the singular part of one among the two families. This is achieved by eliminating uo 
between the two truncation equations 

and results in 

(MKdV) : a2S - 3b4C + 6(b3 + b:) = 0 (AlOa) 

(AlOb) 

(AlOc) 

These SMEs are identical to those of three one-family PDEs, respectively the KdV equation for 
a zero value of the spectral parameter [26], the Boussinesq equation [26], and the Burgers 
equation [26]. Conversely, given one of the three SMES (AlO), the singular manifold method 
[26,27], which only introduces one singular manifold, retrieves the linear system associated 
with the three one-family PDEs (KdV, Bq, Burgers). In order to retrieve the Lax pair of the 
two-family PDEs (MKdV, MBq, BK), one must extend [18,19] the method of Weiss [26]. 
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