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Abstract. The scalar equation equivalent to the ‘classical Boussinesq’, or Broer~Kaup system,
is shown to factorize into a differential operator acting on Burgers equation. The linearizability
of this latter equation provides 2 very simple explanation for the recently found property of
fusion and fission of a class of solitons for this system.

1. Introduction

The Broer—Kaup (BK) system {1-3], also called the classical Boussinesq system, consists of
two coupled partial differential equations (PDE) in the variables (U, V) [1]

U;+(V+-%U2)x=0 (1a)
Vi + (B*Us + UV, =0 B constant (1b)

or (U, V—U?/4 = W) [4]

Up+ (W + 205, =0 (2a)
Wi + BPUsss + JUW, + U W =0 (2b)

or (U, V+ 8U, =Y (5]

U+ (Y + U = BU), =0 (3a)
Yr+(.BYx+UY)x=0 (3b)

(note that, in equations (}a), (15) and (2a). (2b). B only appears by its square). It admits
the two reductions V = £AU, to a Burgers.equation for /. Under the natural parametric
representation of the first equation

2“; ZMI U2 2 a
F— = e e — =% . b 4
U 3b0 v Sbﬂ 2 ﬁ 9b§ (a' U) constant ( )
the BK system is equivalent to the scalar equation [2]
E= %(azux” - Zui)x + 2bp (U tny + Ut} — 3b§b¢n =0 (5)
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This equation is invariant by parity (¢, x, ) = {(~u, —x, —t) and, in order to avoid writing
+a, we denote by a either of the two square roots of a2,

This system possesses a Lax pair [2,6,7] and admits N-soliton solutions [3] with a
coupling factor given in equation (4.16) of [8]. But it also admits another class of solutions
of a very particular type: they are expressed analytically as degenerate N-soliton solutions
whose coupling factor is zero [9, 10]; these solutions have the remarkable property that they
allow fusion and fission to take place {9, 10].

The arguments given up to now for the behaviour of these degenerate solutions are
based on the existence of bilinear [10] or even trilinear [9, 11] forms for the BK equation.
Despite the correct observation [10] that ‘the soliton-fusion solution of BK represents the
confluence of shock waves in the Burgers equation [12)’, only quite heavy explanations
have been given for this phenomenon. One is that ‘the BK system is a reduction of the
two-component KP hierarchy’ [10, 13], another one is that this is just a ‘(reflection of) the
particular structure of the trilinear form” [9].

In this paper, we give a straightforward explanation, which involves no high-level
techniques. We show that this phenomenon is an immediate consequence of the factorization
of the scalar equation (5) into some operator acting on a linearizable equation, namely the
Burgers equation.

2. The Burgers subequation

Sachs [14] pointed out the existence of a reduction of the BK system to Burgers equation
noticeable on the bilinear representation [8] of the BK system. In the appendix, we show that
the Painlevé analysis of (5) provides another reason for the appearance of Burgers equation:
the ‘singular manifold equation’ of (5) is identical to that of Burgers equation {see equation
(A10c)).

On the scalar form (5} of the BK system, one notices immediately the factorization

(6)

3
- 2
= 3bouy — Qutxx — U5,

This factorization breaks the invariance of equation (3) by parity on (&, x, 1), or by parity
on @, which is the same.
The linearizability of the Burgers equation into the heat equation [15]

u=ualogyp 3bogr — agyy =0 )

now has the following simple consequences.
Taking for ¢ the linear superposition

N+1
¢ = Z ghiatut+d; 3bgmj - ak} =0 8}' constant &)
J=i

one generates by equation (7) N-soliton solutions for both Burgers and BK with a zero
coupling factor, i.e. of the degenerate type which exhibits fusion and fission.
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3. The two sets of solutions to BK

The solutions to BK are thus split into two disjoint subsets:
(i) those which are also solutions of the Burgers subequation;
(if) those which are not.

The natural language to characterize these two subsets is that of the singularity structure
of BK (see the appendix). Endeed, the first subset has one family of movable singularitics
(i.e. described by one 7 function), while the second one has two families (i.e. described by
two t functions).

This explains why, with two T functions [8, 10] one finds the N-soliton solution to BK,
while with one t function {9, 11] one can only find the degenerate solution with a zero
coupling factor. Since the trilinear formalism for the BK system introduces only one t
function, it cannot find the correct N-soliton solution.

Let us illustrate this very important point on the one-soliten solution,

The travelling-wave reduction u = [*~%(Z(§) — 2:)d§ — (j1/3bp)t, where ¢ and @ are
constants and z; is a convenient constant translation, yields the equation

?ZP =72 2 - WP+ K2+ K, for z; = 3boc (9)

where Ky, X, are two constants of integration. Its general solution Z is single valued,
When the four zeros of the right-hand side polynomial are distinct, this is a Jacobi elliptic
function; for one double and two simple zeros, the solution is the one-soliton solution [2]
of the BK system

2% = (Z- 200 [(Z+ 0’ +2E -G+ W] (e 2. 1) arbitrary (10)

323 -zt 4
Zp \/% (3212 - 202 - 3,u,) coshkf

Z=z - (23 — 322 +3uw)Bza = 22 + )y #£ 0 (11)

26—+

— Ky =dzp(zf — 26 — ) Ky = 72322 = 22} +2p)

k’Z
and this solution is not a solution of the Burgers equation. For two double zeros, this is a
kink solution which is also a solution of the Burgers equation

z
Z=-—z°tanh£§ u=z[2—z§ E =0 K2=z§ (12)

and corresponds to N = 1 in (8).
When its RH$ has two double zeros, the Jacobi equation (9) admits the Riceati
subequation

aZ' = (Z — z20)(Z + zp). k (13)

The Jacobi equation has two families of movable singuiarities, and the Riccati equation
only one.

The fundamental difference between the true one-soliton (11) and the degenerate solution
(12) is that the latter is the logarithmic derivative of the entire function (8) with N = 1, while
the former is the difference of two logarithmic derivatives of entire functions [16]. Their
structure of movable singularities is therefore quite different: a simple pole for (13); two
simple poles with opposite residues for (9). There is exactly the same difference between
the singularities of u, depending on whether # satisfies Burgers or BK,
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4. Conclusion

The essential feature of the Broer-Kaup system is to have two families of movable
singularities, not just one like Burgers. Since, as shown in this paper, the BK system
contains the Burgers equation as a subequation, the solutions found to BK depend crucially
on the assumption made to find them. The trilinear formalism (assumption of one family)
will only find solutions which are also solutions of Burgers, i.e. those which exhibit fusion
and fission. The bilinear formalism with two v functions, or any other assumption with two
7 functions [16-20}, will find the physically interesting solutions, that is, the ones which
are not also solutions of Burgers.

For the same reason, in order to obtain the Lax pair of BK from Painlevé analysis, one
must go beyond {18, 19] the SME method, which makes use of only one family. This will
be done in a forthcoming paper.
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Appendix. Modified Boussinesq systems
The rDE

E= %(azuxxx - 2“3),\: + 2bgletizx — briztiy — 4byuiztixy 4 Ibsttex + bastzy + bstiyy =0
(A1)

with (a, b;) constants, is invariant by parity on (&, x,t) (the parameter @ represents this
invariance). It includes, as particular cases [8], the BK equation (5), the modified Boussinesq
equation (MBgq) {8,21] and the modified Korteweg—de Vries (MKdV) equation. Its Painlevé
analysis [14, 22] is just a transposition of that of the MBq equation [23,24). Let us use the
invariant formulation [25] of this analysis, and take as expansion variable a function ¥ {and
the x-primitive Log ¥ of x~') whose gradients are

Xe=1+38x> xi=—C+Cex — HCS + Cr)x? (A2)
(Logy), = x~* (Log¥), = ~Cx~' + iC; (A3)
S+ Copy +2Cx S+ CS, =0. (A4}

The singularity degrees of u and E are 0 and 4:
u ~ uy Log i E ~ 2(upg — a'zugl)x"’ (AS)

and the two families ¥ = aLogy + up + w1 x + - - - have the same indices (—1, 0, 3, 4).
Each family generates the necessary conditions for the absence of movable logarithms

1
Q3= —E(b% + 4bs — 4b2)(C; + CC) = 0 (A6)
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b — 2b)(3by + 2b 3bb
Q"'El:(] o)i 1 o)b2+ ;4+b2b5

(21)0 -1 _ (by — 2bp)*(3b +2b0)) C:| (€, +CC)
t X

4 16
Qr..2 2 2 24 2
+7 [(b] + 2bgby — 2B + 2bs)(Cis ++ CCry) + (] + 4bs — 4b3)C2] (A7)
+ (bs — bo(bo + b1)) o + C?uoex + (Cr + CColugr + 2Cugr) = 0

where ug is the arbitrary function introduced at index 0. The other family generates the
conditions obtained by changing the sign of a in the above expressions. All these conditions
are independent of §, and their resolution for arbitrary (C, ug) provides the only three
solutions:

bo=by=bs=0  E= (3(@%usex — 2u2) — 2bgu> + 2bsuy + bau,) =0 (A8a)
bo#0 b, =0 bs = b} (A8H)
bo#£0 by = —dby bs = —3b% by = 4bobs (A8c)

Le. respectively the MKdV, MBq and BK PDEs after some linear transformation on u. Since
all three have a Lax pair, the necessary conditions are also sufficient.

Let us also determine the ‘singular manifold equation’ (SME) [26], i.e. the condition on
(S, C) which is necessary for the existence of an expansion uy = aLog ¥ + ug restricted
to the singular part of one among the two families. This is achieved by eliminating g
between the two truncation equations

E| =4by 4+ (2bg — b))C +4ug, =0 (A9a)

2
Ey=—2bs — %s + baC — bsC2 + alby — bp)Cy

— 2bguo, + Abautox — by Cuigx + 2uf, — 2aug zx =0 (A9B)
and results in
(MKdV) : @S = 3b4C + 6(b3 + b3) = 0 (Al0a)
(MBq) © C - (92-2- ~ g—gc - 3“—253): =0 (A108)
(BK) : C + (%2 - ;:—ch — —gz%S)x =0, (Al0c)

These SMEs are identical to those of three one-family PDEs, respectively the KdV equation for
a zero value of the spectral parameter [26], the Boussinesq equation [26], and the Burgers
equation [26]. Conversely, given one of the three SMEs (A10), the singular manifold method
[26, 271, which only introduces one singular manifold, retrieves the linear system associated
with the three one-family PDEs (Kdv, Bq, Burgers). In order to retrieve the Lax pair of the
two-family PDEs (MKdV, MBq, BK), one must extend [18, 19] the method of Weiss [26].



2836

R Conte et al

References

f]
f2

31
[4]
(5]
8]
M
(8]
9]
(10]
(1]

(12]
(13]

(14]

{151

(16]
[17}

(18]

(19]
[20]
{21]
[22]
(23]
(24]
{23
(26}

[27]

Broer L. } F 1975 Approximale equations for Jong water waves Appl. Sci. Res. 31 377-395

Kaup D J 1975 Finding eigenvalue problems for solving nonlinear evolution equations Prug. Theor. Phys. 54
72-78

Kaup D 1 1975 A higher-order water-wave equation and the method for solving it Prog. Theor, Phys. 54
396-408

Jaulent M and Miodek J 1976 Nonlinear evolution equations associated with energy-dependent Schridinger
potentials Lewt. Math. Phys. 1 243-250

Levi D, Sym A and Wojeiechowski [983 A hierarchy of coupled Korteweg—de Vries equations and the
normalisation conditions of the Hilbett-Riemann problem J. Phys. A: Math. Gen, 16 2423-2432

Matveev V B and Yavor M 1 1979 Solutions presque périodiques et & N solitons de 1'€quation
hydrodynamique non linéaire de Kaop Annales de !"fnstitut Henri Poincaré 31 2541

Leble § B and Ustinov N V 1993 Korteweg—le Vries-modified Korteweg—de Vries systems and Darboux
transforms in 14 1 and 2 4+ 1 dimensions J. Math. Phys. 34 1421-1428

Hirota R and Satsuma J 1977 Nonlinear evolution equations generated from the Bicklund transformation
for the Boussinesq equation Prog. Theor. Phys. 57 797-807

Satsurma ), Kajiwara K, Matsukidaira J and Hietarinta J 1992 Solutions of the Broer-Kaup system through
its trilinear form J. Phys. Soc. Japan 61 3096-3102

Martfnez Alonse L and Medina Reus E 1992 Soliton interaction with change of form in the classical
Boussinesq system Phys. Letr. 167TA 370-376

Matsukidaira J, Satsuma J and Strampp W 1990 Soliton equations expressed by trilinear forms and their
solutions Phys. Lett. 147A 467471

Whitham G B 1974 Linear and Nonlinear Waves ch 13 (New York: Wiley)

Jaulent M, Manna M A, Martfnez Alonso L and Medina Reus E 1990 On the Af” reduction of the two-
component KP hierarchy Phys. Lex, 144A 329-332

Sachs R L 1988 On the integrable variant of the Boussinesq systern: Painlevé propery, rational solutions,
a related many-body problem, and equivalence with AKNS hierarchy Phrysica D 30 1-27

Forsyth A R 1906 Theary of differential equations, Part IV—Partial differentiuf eguations vol V1 (Cambridge:
Cambridge University Press) p 101 (Reprinted 1959 {New York: Dover)}

Hopf E 1950 The partial differential equation u; + uuy = uu,, Comm. Pure Appl. Math. 3 201-230

Cole J D 1951 On a quasilinear parabolic equation occurring in aerodynamics Quart. J. Appl Math. %
225-236

Conte R and Musette M 1993 Linearity inside nonlinearity: exact selutions ta the complex Ginzburg-Landau
equation Physica D 69 1-17

Paintevé P 1902 Sur les équations différentielles du second ordre et d*ordre supérieur dont I"intégrale générale
est uniforme Acta Marh. 25 1-85

Estévez P G, Gordoa P R, Martinez Alonso L and Medina Reus E 1993 Modified singular manifold
expansion: application to the Boussinesq and Mikhailov=Shabat systems J, Phys. A: Math. Gen. 26 1915~
1925

Musette M and Conte R 1994 The two-singular manifold method 1. Modified kdv and sine—Gordon equations
J. Phys. A: Math. Gen. 27 to appear

Pickering A 1993 A new truncation in Painlevé analysis J, Phys. Ar Math. Gen. 26 43954405

Fordy A and Gibbons J 1981 Factorization of operators II J. Math. Phys. 22 1170-1175

Weiss J, Tabor M and Camevale G 1983 The Painlevé property for partial differential equations
J. Math. Phys. 24 522-526

Weiss J 1985 The Patnlevé property and Bicklund transformations for the sequence of Boussinesq equations
J. Math, Phys. 26 258-269

Conte R 1992 Unification of ppE and oDE versions of Painlevé analysis into a single invariant version
Puainlevé transcendents, their asymptotics and physical applications ed D Levi and P Winternitz (New
York: Plenum) pp 125-144

Conte R 1989 Invariant Painlevé analysis of partial differentiol equations Phys. Lew. 1404 383-390

Weiss T 1983 The Painlevé property for partial differential equations. II: Bicklund transformation, Lax pairs,
and the Schwarzian derivative J. Math. Phys. 24 1405~-1413

Musette M and Conte R 1991 Algorithmic method for dertving Lax pairs from the invariant Painlevé analysis
of nonlinear partial differential equations J. Math. Phys. 32 14501457



